Longitudinal Data Analysis
Longitudinal data can be viewed as a special case of the multilevel data where time is nested within individual participants. All longitudinal data share at least three features: (1) the same entities are repeatedly observed over time; (2) the same measurements (including parallel tests) are used; and (3) the timing for each measurement is known (Baltes & Nesselroade, 1979). To study phenomena in their time-related patterns of constancy and change is a primary reason for collecting longitudinal data. Figure 1 show the plot of 50 participants from the ACTIVE study on the variable EPT for 6 times. Clearly, each line represents a participant. From it, we can see how an individual changes over time.
Growth curve model
Growth curve models (GCM; e.g., McArdle \& Nesselroade, 2003; Meredith & Tisak, 1990) exemplify a widely used technique with a direct match to the objectives of longitudinal research described by Baltes and Nesselroade (1979) to analyze explicitly intra-individual change and inter-individual differences in change. In the past decades, growth curve models have evolved from fitting a single curve for only one individual to fitting multilevel or mixed-effects models and from linear to nonlinear models (e.g., McArdle, 2001; McArdle & Nesselroade, 2003; Meredith & Tisak, 1990; Tucker, 1958; Wishart, 1938).
A typical linear growth curve model can be written as
\begin{eqnarray*} y_{it} & = & \beta_{0i}+\beta_{1i}\times time_{it}+e_{it}\\ \beta_{0i} & = & \gamma_{0}+v_{0i}\\ \beta_{1i} & = & \gamma_{1}+v_{1i}\end{eqnarray*}
where $y_{it}$ is data for participant $i$ at time $t$. For each individual $i$, a linear regression model can be fitted with its own intercept $\beta_{0i}$ and slope $\beta_{1i}$. On average, there is an intercept $\gamma_{0}$ and slope $\gamma_{1}$ for all individuals. The variation of $\beta_{0i}$ and $\beta_{1i}$ represents individual differences.
Individual difference can be further explained by other factors, for example, education level and age. Then the model is
\begin{eqnarray*} y_{it} & = & \beta_{0i}+\beta_{1i}\times time_{it}+e_{it}\\ \beta_{0i} & = & \gamma_{0}+\gamma_{1}\times edu_{i}+v_{0i}\\ \beta_{1i} & = & \gamma_{2}+\gamma_{3}\times edu_{i}+v_{1i} \end{eqnarray*}
GCM as a mulitlevel/mixed-effect model
A GCM can first be fitted as a multilevel model or mixed-effects model using the R package lme4
.
To use the package, we would need to rewrite the growth curve model as a mixed-effect model. For the model without second level predictor, we have
\[ y_{it}=\gamma_{0}+v_{i0}+\gamma_{1}*time_{it}+v_{1i}*time_{it}+e_{it}. \]
For the one with the second level predictor, such as education, we have
\[y_{it}=\gamma_{0}+\gamma_{1}*edu+v_{0i}+\gamma_{2}*time_{it} +\gamma_{3}*edu_{i}*time_{it}+v_{1i}*time_{it}+e_{it}.\]
For demonstration, we investigate the growth of word set test (ws
in the ACTIVE data set). In the current data set, we have the data in wide format, in which the 6 measures of ws
are 6 variables. To use the R package, long format data are needed. For the long-format data, we need to stack the data from all waves into a long variable. The R code below reformats the data and plot them.
> usedata('active.full') > attach(active.full) The following object is masked _by_ .GlobalEnv: training > > longdata<-data.frame(ws=c(ws1,ws2,ws3,ws4,ws5,ws6), + parti=factor(rep(paste('p', 1:1114, sep=''), 6)), + time=rep(1:6, each=1114), + edu=rep(edu, 6)) > > plot(1:6, longdata$ws[longdata$parti=="p1"], type='l', + xlab='Time', ylab="ws", ylim=c(0, max(longdata$ws))) Fontconfig error: No writable cache directories > for (i in 2:50){ + lines(1:6, longdata$ws[longdata$parti==paste("p", i, sep="")]) + } >
Unconditional model (model without second level predictors)
Fitting the model is actually straightforward using the lmer()
function. The input and output are given below. Based on the output, the fixed effects for time (.214, t-value=11.59) is significant, therefore, there is a linear growth trend. The average intercept is 11.93 and is also significant.
> library(lme4) Loading required package: Matrix > library(lmerTest) Attaching package: 'lmerTest' The following object is masked from 'package:lme4': lmer The following object is masked from 'package:stats': step > usedata('active.full') > attach(active.full) The following object is masked _by_ .GlobalEnv: training > longdata<-data.frame(ws=c(ws1,ws2,ws3,ws4,ws5,ws6), + parti=factor(rep(paste('p', 1:1114, sep=''), 6)), + time=rep(1:6, each=1114), + edu=rep(edu, 6)) > > m1<-lmer(ws~time+(1+time|parti), data=longdata) > summary(m1) Linear mixed model fit by REML. t-tests use Satterthwaite's method [ lmerModLmerTest] Formula: ws ~ time + (1 + time | parti) Data: longdata REML criterion at convergence: 34088.3 Scaled residuals: Min 1Q Median 3Q Max -4.3919 -0.5446 -0.0163 0.5643 4.4923 Random effects: Groups Name Variance Std.Dev. Corr parti (Intercept) 21.11590 4.5952 time 0.07362 0.2713 0.15 Residual 5.36088 2.3154 Number of obs: 6684, groups: parti, 1114 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 1.193e+01 1.521e-01 1.113e+03 78.42 <2e-16 *** time 2.140e-01 1.847e-02 1.113e+03 11.59 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) time -0.285 > anova(m1) Type III Analysis of Variance Table with Satterthwaite's method Sum Sq Mean Sq NumDF DenDF F value Pr(>F) time 720.17 720.17 1 1113 134.34 < 2.2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 >
It is useful to test whether random-effects parameters such as the variances of intercept and slope are significance or not to evaluate individual differences. This can be done by comparing the current model with a model without random intercept or slope.
For example, to test the individual differences in slope for time. The random effects for time is .07. Based on ANOVA analysis, it is significant with p-value about 0. Therefore, there is significant individual difference in the growth rate (slope). This indicates that everyone has a different change rate. Note that in m1.alt
, the random effect for time was not used.
> library(lme4) Loading required package: Matrix > library(lmerTest) Attaching package: 'lmerTest' The following object is masked from 'package:lme4': lmer The following object is masked from 'package:stats': step > usedata('active.full') > attach(active.full) > longdata<-data.frame(ws=c(ws1,ws2,ws3,ws4,ws5,ws6), + parti=factor(rep(paste('p', 1:1114, sep=''), 6)), + time=rep(1:6, each=1114), + edu=rep(edu, 6)) > > m1<-lmer(ws~time+(1+time|parti), data=longdata) > > m1.alt1<-lmer(ws~time+(1|parti), data=longdata) > summary(m1.alt1) Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [lmerMod] Formula: ws ~ time + (1 | parti) Data: longdata REML criterion at convergence: 34133.4 Scaled residuals: Min 1Q Median 3Q Max -4.7097 -0.5452 0.0030 0.5784 4.5111 Random effects: Groups Name Variance Std.Dev. parti (Intercept) 23.243 4.821 Residual 5.618 2.370 Number of obs: 6684, groups: parti, 1114 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 1.193e+01 1.589e-01 1.497e+03 75.07 <2e-16 *** time 2.140e-01 1.698e-02 5.569e+03 12.61 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) time -0.374 > > anova(m1, m1.alt1) refitting model(s) with ML (instead of REML) Data: longdata Models: ..1: ws ~ time + (1 | parti) object: ws ~ time + (1 + time | parti) Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) ..1 4 34133 34160 -17063 34125 object 6 34092 34133 -17040 34080 45 2 1.692e-10 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 >
To test the individual differences in intercept. The random effects for intercept is 21.11. Based on ANOVA analysis below, it is significant. Therefore, there is individual difference or individuals have different intercepts.
> library(lme4) Loading required package: Matrix > library(lmerTest) Attaching package: 'lmerTest' The following object is masked from 'package:lme4': lmer The following object is masked from 'package:stats': step > usedata('active.full') > attach(active.full) > longdata<-data.frame(ws=c(ws1,ws2,ws3,ws4,ws5,ws6), + parti=factor(rep(paste('p', 1:1114, sep=''), 6)), + time=rep(1:6, each=1114), + edu=rep(edu, 6)) > > m1<-lmer(ws~time+(1+time|parti), data=longdata) > > m1.alt2<-lmer(ws~time+(time-1|parti), data=longdata) > summary(m1.alt2) Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [lmerMod] Formula: ws ~ time + (time - 1 | parti) Data: longdata REML criterion at convergence: 37278 Scaled residuals: Min 1Q Median 3Q Max -3.0574 -0.5435 -0.0079 0.5204 4.5639 Random effects: Groups Name Variance Std.Dev. parti time 1.228 1.108 Residual 10.230 3.198 Number of obs: 6684, groups: parti, 1114 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 1.193e+01 8.921e-02 5.569e+03 133.680 < 2e-16 *** time 2.140e-01 4.034e-02 1.986e+03 5.306 1.24e-07 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) time -0.510 > > anova(m1, m1.alt2) refitting model(s) with ML (instead of REML) Data: longdata Models: ..1: ws ~ time + (time - 1 | parti) object: ws ~ time + (1 + time | parti) Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) ..1 4 37278 37305 -18635 37270 object 6 34092 34133 -17040 34080 3190 2 < 2.2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 >
Conditional model (model with second level predictors)
Using the same set of data, we now investigate whether education is a predictor of random intercept and slope. Given there is individual differences in intercept and slope, we want to explain why. So, we use Edu as a explanatory variable. From the output, we can see that the parameter \(\gamma_{1} = .78\) is significant. Higher education relates to bigger intercept. In addition, the parameter $\gamma_{3} = -.022$ is significant. Higher education relates to lower growth rate of ws
.
> library(lme4) Loading required package: Matrix > library(lmerTest) Attaching package: 'lmerTest' The following object is masked from 'package:lme4': lmer The following object is masked from 'package:stats': step > usedata('active.full') > attach(active.full) > longdata<-data.frame(ws=c(ws1,ws2,ws3,ws4,ws5,ws6), + parti=factor(rep(paste('p', 1:1114, sep=''), 6)), + time=rep(1:6, each=1114), + edu=rep(edu, 6)) > > m2<-lmer(ws~time+edu+time*edu+(1+time|parti), data=longdata) > summary(m2) Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees of freedom [lmerMod] Formula: ws ~ time + edu + time * edu + (1 + time | parti) Data: longdata REML criterion at convergence: 33907.6 Scaled residuals: Min 1Q Median 3Q Max -4.3732 -0.5494 -0.0160 0.5700 4.3767 Random effects: Groups Name Variance Std.Dev. Corr parti (Intercept) 17.04402 4.1284 time 0.07046 0.2654 0.27 Residual 5.36089 2.3154 Number of obs: 6684, groups: parti, 1114 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 1.240e+00 7.506e-01 1.112e+03 1.652 0.0987 . time 5.276e-01 9.894e-02 1.112e+03 5.332 1.17e-07 *** edu 7.779e-01 5.369e-02 1.112e+03 14.488 < 2e-16 *** time:edu -2.282e-02 7.077e-03 1.112e+03 -3.225 0.0013 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) time edu time -0.270 edu -0.983 0.265 time:edu 0.265 -0.983 -0.270 > anova(m2) Analysis of Variance Table of type III with Satterthwaite approximation for degrees of freedom Sum Sq Mean Sq NumDF DenDF F.value Pr(>F) time 152.43 152.43 1 1112 28.434 1.174e-07 *** edu 1125.20 1125.20 1 1112 209.890 < 2.2e-16 *** time:edu 55.76 55.76 1 1112 10.400 0.001297 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 >
GCM as a SEM
In addition to estimating a GCM as a multilevel or mixed-effects model, we can also estimate it as a SEM. To illustrate this, we consider a linear growth curve model. If a group of participants all have linear change trend, for each individual, we can fit a regression model such as \[ y_{it}=\beta_{i0}+\beta_{i1}t+e_{it} \] where $\beta_{i0}$ and $\beta_{i1}$ are intercept and slope, respectively. Note that here we let $time_{it} = t$. If each individual has different time of data collection, it can still be done in the SEM framework but would be more complex. By writing the time out, we would have \[ \left(\begin{array}{c} y_{i1}\\ y_{i2}\\ \vdots\\ y_{iT} \end{array}\right)=\left(\begin{array}{cc} 1 & 1\\ 1 & 2\\ 1 & \vdots\\ 1 & T \end{array}\right)\left(\begin{array}{c} \beta_{i0}\\ \beta_{i1} \end{array}\right)+\left(\begin{array}{c} e_{i1}\\ e_{i2}\\ \vdots\\ e_{iT} \end{array}\right) \]
Note that the above equation resembles a factor model with two factors - $b_{0}$ and $b_{1}$ and a factor loading matrix with known factor loading matrix. The individual intercept and slope can be viewed as factor scores to be estimated. Furthermore, we are interested in model with mean structure because the means of $\beta_{0}$ and $\beta_{1}$ have their meaning as average intercept and slope (rate of change). The variances of the factors can be estimated - they indicate the variations of intercept and slope. Using path diagram, the model is shown in the figure below.
With the model, we can estimate it using the sem()
function in the lavaan
package. Because of the frequent use of growth curve model, the package also provides a function growth()
to ease such analysis. Unlike the lme4 package, in using SEM, the wide format of data is directly used. The R input and output for the unconditional model is given below.
Note that the gcm()
function works similarly as sem()
function. Using this method, each parameter in the model can be directly tested using a z-test. In addition, we can use the fit statistics for SEM to test the fit of the growth curve model. Particularly for the current analysis, the linear growth curve model does not seem to fit the data well.
> library(lavaan) This is lavaan 0.5-23.1097 lavaan is BETA software! Please report any bugs. > usedata('active.full') > > gcm <- ' + beta0 =~ 1*ws1 + 1*ws2 + 1*ws3 + 1*ws4 + 1*ws5 + 1*ws6 + beta1 =~ 1*ws1 + 2*ws2 + 3*ws3 + 4*ws4 + 5*ws5 + 6*ws6 + ' > > gcm.res <- growth(gcm, data=active.full) Warning message: In lav_object_post_check(object) : lavaan WARNING: some estimated lv variances are negative > summary(gcm.res, fit=TRUE) lavaan (0.5-23.1097) converged normally after 53 iterations Number of observations 1114 Estimator ML Minimum Function Test Statistic 691.253 Degrees of freedom 16 P-value (Chi-square) 0.000 Model test baseline model: Minimum Function Test Statistic 8065.569 Degrees of freedom 15 P-value 0.000 User model versus baseline model: Comparative Fit Index (CFI) 0.916 Tucker-Lewis Index (TLI) 0.921 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -16958.575 Loglikelihood unrestricted model (H1) -16612.949 Number of free parameters 11 Akaike (AIC) 33939.151 Bayesian (BIC) 33994.324 Sample-size adjusted Bayesian (BIC) 33959.385 Root Mean Square Error of Approximation: RMSEA 0.195 90 Percent Confidence Interval 0.182 0.207 P-value RMSEA <= 0.05 0.000 Standardized Root Mean Square Residual: SRMR 0.095 Parameter Estimates: Information Expected Standard Errors Standard Latent Variables: Estimate Std.Err z-value P(>|z|) beta0 =~ ws1 1.000 ws2 1.000 ws3 1.000 ws4 1.000 ws5 1.000 ws6 1.000 beta1 =~ ws1 1.000 ws2 2.000 ws3 3.000 ws4 4.000 ws5 5.000 ws6 6.000 Covariances: Estimate Std.Err z-value P(>|z|) beta0 ~~ beta1 0.406 0.106 3.817 0.000 Intercepts: Estimate Std.Err z-value P(>|z|) .ws1 0.000 .ws2 0.000 .ws3 0.000 .ws4 0.000 .ws5 0.000 .ws6 0.000 beta0 12.263 0.155 79.217 0.000 beta1 0.161 0.018 8.770 0.000 Variances: Estimate Std.Err z-value P(>|z|) .ws1 8.999 0.443 20.293 0.000 .ws2 5.614 0.284 19.751 0.000 .ws3 3.867 0.209 18.539 0.000 .ws4 4.091 0.219 18.639 0.000 .ws5 4.712 0.249 18.915 0.000 .ws6 6.420 0.343 18.723 0.000 beta0 20.854 1.143 18.246 0.000 beta1 -0.004 0.019 -0.186 0.853 >
Fitting a conditional model is similar but one would need to use the predictor for the factors.
> library(lavaan) This is lavaan 0.5-23.1097 lavaan is BETA software! Please report any bugs. > usedata('active.full') > > gcm2 <- ' + beta0 =~ 1*ws1 + 1*ws2 + 1*ws3 + 1*ws4 + 1*ws5 + 1*ws6 + beta1 =~ 1*ws1 + 2*ws2 + 3*ws3 + 4*ws4 + 5*ws5 + 6*ws6 + beta0 ~ edu + beta1 ~ edu + ' > > gcm2.res <- growth(gcm2, data=active.full) Warning message: In lav_object_post_check(object) : lavaan WARNING: some estimated lv variances are negative > summary(gcm2.res, fit=TRUE) lavaan (0.5-23.1097) converged normally after 54 iterations Number of observations 1114 Estimator ML Minimum Function Test Statistic 697.223 Degrees of freedom 20 P-value (Chi-square) 0.000 Model test baseline model: Minimum Function Test Statistic 8259.498 Degrees of freedom 21 P-value 0.000 User model versus baseline model: Comparative Fit Index (CFI) 0.918 Tucker-Lewis Index (TLI) 0.914 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -19509.237 Loglikelihood unrestricted model (H1) -19160.626 Number of free parameters 13 Akaike (AIC) 39044.475 Bayesian (BIC) 39109.679 Sample-size adjusted Bayesian (BIC) 39068.388 Root Mean Square Error of Approximation: RMSEA 0.174 90 Percent Confidence Interval 0.163 0.186 P-value RMSEA <= 0.05 0.000 Standardized Root Mean Square Residual: SRMR 0.083 Parameter Estimates: Information Expected Standard Errors Standard Latent Variables: Estimate Std.Err z-value P(>|z|) beta0 =~ ws1 1.000 ws2 1.000 ws3 1.000 ws4 1.000 ws5 1.000 ws6 1.000 beta1 =~ ws1 1.000 ws2 2.000 ws3 3.000 ws4 4.000 ws5 5.000 ws6 6.000 Regressions: Estimate Std.Err z-value P(>|z|) beta0 ~ edu 0.782 0.055 14.290 0.000 beta1 ~ edu -0.023 0.007 -3.348 0.001 Covariances: Estimate Std.Err z-value P(>|z|) .beta0 ~~ .beta1 0.531 0.098 5.416 0.000 Intercepts: Estimate Std.Err z-value P(>|z|) .ws1 0.000 .ws2 0.000 .ws3 0.000 .ws4 0.000 .ws5 0.000 .ws6 0.000 .beta0 1.510 0.765 1.974 0.048 .beta1 0.486 0.098 4.959 0.000 Variances: Estimate Std.Err z-value P(>|z|) .ws1 8.860 0.434 20.406 0.000 .ws2 5.641 0.283 19.939 0.000 .ws3 3.903 0.209 18.686 0.000 .ws4 4.090 0.219 18.637 0.000 .ws5 4.717 0.249 18.921 0.000 .ws6 6.428 0.342 18.772 0.000 .beta0 16.695 0.968 17.246 0.000 .beta1 -0.006 0.019 -0.340 0.734 >
To cite the book, use:
Zhang, Z. & Wang, L. (2017-2022). Advanced statistics using R. Granger, IN: ISDSA Press. https://doi.org/10.35566/advstats. ISBN: 978-1-946728-01-2.
To take the full advantage of the book such as running analysis within your web browser, please subscribe.